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The �-arrestins (�arrs) are versatile, multifunctional adapter
proteins that are best known for their ability to desensitize G
protein-coupled receptors (GPCRs), but also regulate a diverse
array of cellular functions. To signal in such a complex fashion,
�arrs adopt multiple conformations and are regulated at multi-
ple levels to differentially activate downstream pathways.
Recent structural studies have demonstrated that �arrs have a
conserved structure and activation mechanism, with plasticity
of their structural fold, allowing them to adopt a wide array of
conformations. Novel roles for �arrs continue to be identified,
demonstrating the importance of these dynamic regulators of
cellular signaling.

�-Arrestins (�arrs)2 are ubiquitously expressed proteins that
were first described for their role in desensitizing G protein-
coupled receptors (GPCRs) (1). We now appreciate that these
proteins are multifunctional adapter proteins that regulate a
vast array of cellular functions. �arrs were identified through
their sequence homology to visual arrestin (arrestin-1), so
named because of its ability to “arrest” rhodopsin signaling in
the retina (2). There are two �arr isoforms, �-arrestin1 and
�-arrestin2 (also denoted as arrestin-2 and arrestin-3, respec-
tively). Both are expressed ubiquitously and share 78%
sequence homology (3). �arrs are highly conserved across spe-
cies, with �50% sequence homology between vertebrates and
invertebrates. The other arrestins are expressed in the eye:
arrestin-1 (visual arrestin) and arrestin-4 (cone arrestin) (4).
There are other proteins, termed �-arrestins or arrestin
domain-containing proteins, that share the arrestin structural
fold and are involved in receptor endocytosis, although the full
breadth of their functions is still emerging (5). Similar to arres-
tin’s function in the visual system, �arrs were first identified for
their capacity to desensitize �2 adrenergic receptor (�2AR) G
protein signaling following agonist stimulation (1). Through a
number of investigations, it became apparent that the two �arr

isoforms shared the capability to interact with activated
GPCRs, but that they differed in terms of their expression pat-
terns, their specificity for different GPCRs, and their functional
effects (6). We now appreciate that the �arrs regulate a diverse
array of cellular processes including MAPK signaling, receptor
transactivation, receptor trafficking, and transcriptional regu-
lation in addition to the canonical roles of GPCR desensitiza-
tion and internalization (7, 8). These studies have revealed the
current spectrum of �arr-mediated cell processes downstream
of GPCRs (Fig. 1).

Distinct and Overlapping Roles for the �arrs

�arr1 and �arr2 knockouts are phenotypically normal and
produce viable progeny, but these mice display abnormal
responses to physiologic stresses (9, 10). This suggests a com-
pensatory ability for each isoform. Nevertheless, important dif-
ferences between �arr isoforms are present (11). Although both
accumulate in the cytoplasm following overexpression, �arr1,
but not �arr2, accumulates in the nucleus. Although both �arr1
(418 amino acids) and �arr2 (410 amino acids) have nuclear
localization sequences on their N termini, only �arr2 has a
nuclear export sequence located on its C terminus, thereby
accounting for differences in nucleocytoplasmic shuttling (12).
�arr1 and �arr2 scaffold to different signaling pathways; how-
ever, this is often cell type- and receptor-specific. �arr2, but not
�arr1, is known to be necessary for creating a signaling that
activates JNKs (13). �arr1 and �arr2 can “reciprocally regulate”
signaling at certain receptors; that is, one isoform increases
pathway-specific signaling, whereas the other isoform inhibits
signaling. Reciprocal regulation is observed in the type 1 angio-
tensin II receptor (AT1R), where siRNA knockdown of �arr2
attenuates ERK signaling, whereas knockdown of �arr1 poten-
tiates ERK signaling (14). However, at other receptors such as
the �2AR and the type 1 parathyroid hormone receptor
(PTH1R), knockdown of either �arr1 or �arr2 decreases ERK
signaling (15, 16). In addition, growing evidence suggests that
the kinetics of �arr-mediated signaling is tissue-dependent
(17). Adding to the complexity, the functions of �arrs appear to
be strongly influenced by their cellular environment, such as
the presence or absence of critical signaling partners such as G
protein receptor kinases (GRKs) (18).

�arr Post-translational Modifications

Post-translational modifications are critical to �arr signaling
and trafficking. �arr1 and �arr2 are constitutively phosphory-
lated, and both require C-terminal dephosphorylation for tar-
geting internalized receptors to clathrin. The phosphorylation
site differs between �arr isoforms (Ser412 for �arr1, Ser361 and
Thr383 for �arr2) (19). However, dephosphorylation of �arrs is
not required for desensitization of G protein signaling. Differ-
ential trafficking of �arr isoforms often controls the kinetics of
desensitization, as well as if or when a receptor is recycled back
to the membrane surface. Dephosphorylation of �arrs follow-
ing receptor activation is necessary for full functionality,
including receptor internalization and �arr-mediated MAPK
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signaling. Covalent modification of �arr with ubiquitin (ubiq-
uitination) results in sustained �arr�GPCR complexes and pro-
longed MAPK activity. Ubiquitination of a GPCR is necessary
for receptor degradation, and ubiquitination of �arrs is neces-
sary for GPCR internalization (20). Different patterns of �arr
ubiquitination (especially at Lys11 and Lys12) result in changes
in receptor trafficking (see below) and the ability to scaffold
signalosomes (21). Other reported modifications that regulate
�arr function are S-nitrosylation (22) and SUMOylation (23),
and it is likely that �arrs are modified in other, yet unexplored,
ways that impact their functions.

Desensitization

Receptor desensitization is the process by which repeated
stimulation of a GPCR results in a decreased response over
seconds to minutes. This is in contrast to down-regulation, the
process underlying decreased signaling that occurs over hours.
Receptor-dependent activation of heterotrimeric G proteins
induces dissociation of G� and G�� subunits, promoting their
interactions with effector proteins that lead to downstream sig-
naling. Desensitization of GPCR signaling requires a coordi-
nated response by GRKs and �arrs (24). The first functional
effect noted in the arrestin family was the desensitization of G
protein-mediated signaling by rhodopsin (2). G protein signal-
ing inhibition was soon recognized as a function of �arrs in
tissues outside of the visual system, and inhibition of G protein-
mediated signaling was the primary function assigned to �arrs
until the mid-1990s. �arrs are thought to quench G protein
signaling by sterically inhibiting the G protein interaction at the
second (ICL2) and third (ICL3) intracellular loops of a GPCR (6,
25). This steric hindrance uncouples GPCRs from the G protein
signal transduction process, which results in desensitization of
second messenger pathways (26).

Phosphorylation of the cytoplasmic elements of GPCRs is
critical for �arr recruitment and receptor desensitization (2, 24,
27, 28). GPCR phosphorylation can be targeted directly to
intracellular regions of the ligand-bound receptor complex (ho-

mologous desensitization) or to multiple GPCRs throughout
the cell (heterologous desensitization). Heterologous desensiti-
zation is often mediated by PKA or PKC (29). In homologous
desensitization, phosphorylation of the GPCR intracellular res-
idues is predominately mediated by GRKs (28). There are seven
GRK isoforms: GRK1 and GRK7 are confined to the visual sys-
tem, GRK2, GRK3, GRK5, and GRK6 are ubiquitously
expressed, and GRK4 is expressed primarily in the reproductive
tract (30). Importantly, phosphorylation of GPCRs appears to
be absolutely required for desensitization. Elimination of
intracellular phosphorylation, either by using phosphorylation-
deficient receptor mutants or by co-transfecting a dominant-
negative GRK, abolishes �arr recruitment, desensitization,
and internalization (27, 31). This process occurs sequentially, as
�arr binding requires both ligand-induced conformational
change in the GPCR and GPCR phosphorylation (32). Because
GRK-mediated phosphorylation of receptors is often the rate-
limiting aspect of receptor desensitization, it can dominate the
kinetics of �arr binding to receptors in intact cells. Heteroge-
neity in the phosphorylation sites is a second source of com-
plexity, because GRK-mediated phosphorylation occurs not
only at the C-terminal tail of the receptor (e.g. rhodopsin and
the �2AR) but also at many other intracellular sites, most nota-
bly ICL3 (e.g. �2 adrenergic receptor (33) and M2 muscarinic
receptor (34)).

Trafficking

For a number of GPCRs, �arrs function as adapters to target
receptors to clathrin-coated pits through its scaffolding of AP-2
and clathrin (35). Many, but not all (36 –38), GPCRs appear to
require �arrs for internalization. The recruitment of �arr2 for
its receptors can be modified by mutation of selected “receptor
discriminator” residues (39). Receptors that follow the clathrin-
dependent endocytic pathway are internalized in clathrin-
coated pits in a dynamin-dependent fashion (40). �arrs scaffold
multiple protein regulators including ARF6 (41) and n-ethyl-
maleimide-sensitive fusion protein (42), which are implicated
in �arr-mediated receptor internalization. Once internalized,
the receptor continues to tubulovesicular early endosomes.
Here, receptors are sorted to either recycling endosomes, which
return GPCRs to the plasma membrane, or multivesicular late
endosomes, which traffic receptors to lysosomes for degrada-
tion (7). Some GPCRs internalize in the absence of �arrs, but
require them for recycling (43).

GPCRs that traffic through the clathrin-dependent endo-
cytic pathway can be divided into two groups, class A and B,
based on the characteristics of agonist-dependent �arr binding
(44). �arrs facilitate the desensitization and internalization of
both receptor classes. Class A receptors, such as the �2 adre-
nergic receptor, bind �arr2 with greater affinity than �arr1.
Class B receptors, such as the V2 vasopressin receptor, bind
�arr2 and �arr1 with approximately equal affinities. In class A
interactions, receptors internalized in membrane vesicles
remain at the cellular surface, and �arrs dissociate from the
receptor at or near the plasma membrane. In class B interac-
tions, �arrs form a long-lived complex with the receptor and
traffic into endosomes. Class A receptors are associated with
transient �arr ubiquitination, and class B receptors are associ-

FIGURE 1. The spectrum of �arr-mediated signaling. �arrs regulate a wide
array of pathways downstream of GPCRs (see text). PDEs, phosphodies-
terases; EGFR, EGF receptor; PP2A, protein phosphatase 2A; TRP, transient
receptor potential.
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ated with stable �arr ubiquitination. Notably, class A patterns
can be switched to class B by covalently linking ubiquitin to
�arr or by switching the C terminus of the receptor to that of a
class B receptor (20). Differential phosphorylation by GRKs and
other kinases also regulates the receptor-�arr interaction (45).
These changes in receptor and �arr post-translational modifi-
cations appear to be ligand-dependent, as different ligands
binding to the same receptor can result in class A or B patterns.
In addition to ligand-stimulated receptors, constitutively active
receptors that internalize in the absence of ligand appear to rely
on �arrs for trafficking (46). �arrs can also traffic receptors to
distinct areas of the cell, such as �arr translocation of Smooth-
ened (Smo) during Hedgehog pathway activation. Once
formed, this �arr�Smo complex localizes to the primary cilia,
where the complex activates Gli transcription factors (47).

Signaling

It is now appreciated that in addition to regulating receptor-
stimulated G protein signaling, �arrs are also capable of initiat-
ing distinct signaling patterns (48). These signaling patterns are
often both spatially and temporally distinct from G protein-
mediated signaling, and result in unique cellular, physiological,
and pathophysiological consequences. In addition to differen-
tial trafficking, �arrs also scaffold MAPKs, including ERK1/2.
Both G proteins and �arrs mediate ERK1/2 activation, but
through distinct mechanisms. Recruitment of �arrs sterically
inhibits G protein interaction with the active receptor, thus
quenching the rapid G protein-mediated phase of ERK activa-
tion. Sometimes G protein-mediated ERK activation can also
include a slow phase (49), so kinetics alone cannot distinguish
between G protein- and �arr-mediated ERK signaling. Sepa-
rately, �arr scaffolds Raf-1, MEK1, and ERK, thus serving to
sequester ERK in the cytosol (50). Seclusion of phosphorylated
ERK1/2 in the cytosol precludes ERK-mediated transcription
and prolongs ERK signaling. Similarly, �arr2 scaffolds JNK1/2
with its upstream kinases MKK4 and MKK7, which phosphor-
ylate different residues in its activation loop (13). Activation of
p38 signaling cascades is also �arr-dependent, although a direct
scaffolding complex of �arr and p38 has not been elucidated
(51, 52). Modified �arrs have also been reported to signal to
kinases independently of GPCRs (53).

Ubiquitination is now appreciated to regulate not only pro-
tein degradation, but also protein signaling. In addition to being
ubiquitinated themselves, �arrs act as adapters for multiple E3
ubiquitin ligases. Complexes containing �arr and E3 ligases are
essential for mediating aspects of ubiquitin-dependent signal-
ing. For example, �arrs are critically involved in ubiquitination
of receptors, acting on late endosomal populations as a lyso-
somal degradation signal for the receptor. More broadly, �arrs
act as adapters for several E3 ligases that catalyze ubiquitina-
tion, such as Mdm2. Mdm2 ubiquitination of �arr2 is required
for clathrin-mediated internalization of the �2AR (54), whereas
the E3 ligase AIP4 is necessary for sorting of CXCR4 to early
endosomes and then lysosomes (55). Endosomal sorting of
CXCR4 also requires �arr1 interaction with STAM-1, part of
the endosomal sorting complex required for transport
(ESCRT-0) machinery (56). �arrs are also regulated by deubiq-
uitinating enzymes such as the ubiquitin-specific protease

USP33 (57, 58), thus providing a mechanism for coordinating
receptor recycling and resensitization. Interestingly, evidence
suggests that receptor post-translational modification can
influence later signaling events, either by catalyzing additional
post-translational modifications or by controlling downstream
signaling pathways (55, 59).

A number of other signaling pathways have been demon-
strated to be regulated by �arrs. The transactivation of EGF
receptor by GPCRs can be regulated by �arrs, through the acti-
vation of a transmembrane matrix metalloprotease that cleaves
membrane-bound EGF ligand (60). �arr2 can inhibit NF-�B
signaling through stabilization of I�Ba (61). �arr1 can directly
influence epigenetic modifications through nuclear interaction
with histone acetylases and deacetylases that influence chroma-
tin structure (62). There are now even examples of �arr-medi-
ated G protein signaling. �arrs promote G protein signaling by
the type 1 parathyroid hormone (63) and V2 vasopressin recep-
tor (64) from endosomes, an effect that is lost with �arr knock-
down. The �2AR has also been noted to maintain an active
conformation that can signal through G proteins to generate
cAMP from endosomes (65). These findings suggest that �arr
trafficking of receptors to endosomes results in a receptor that
is still capable of activating G proteins. This signaling appears to
be mediated by a complex of receptor��arr�G protein (63),
direct evidence of which would fully overturn the classic para-
digm of �arrs as “arresting” G protein signaling.

�arr-biased Agonism

Following the discovery of �arr-mediated signaling came the
observation that some ligands are capable of selectively signal-
ing through �arrs while blocking signaling through G proteins.
This is an example of biased agonism, also referred to as func-
tional selectivity, which is the ability of certain agonists to signal
through different pathways of a GPCR with different efficacies
(66). Strongly biased agonists activate one pathway while com-
pletely blocking signaling through others, whereas partially
biased agonists may strongly signal through one pathway while
weakly signaling through another. Biased agonism between dif-
ferent G proteins has been appreciated for 30 years (67), and the
discovery of �arr-biased agonism resulted in renewed interest
in this area (66). Biased agonism changes the classical models of
receptor theory associated with single active and inactive
receptor conformations to one with multiple receptor confor-
mations. Although balanced ligands stabilize the conforma-
tions that are competent for signaling to all downstream path-
ways, biased ligands stabilize only those conformations that are
capable of promoting a subset of downstream signaling effec-
tors. For example, ligands can show bias for either G protein-
mediated (G protein-biased) or �arr-mediated (�arr-biased)
signaling (Fig. 2). This is necessarily an oversimplification, as
recruitment of �arrs requires the activity of GRKs, and hence G
protein- and �arr-biased ligands will also be biased with respect
to GRK recruitment and receptor phosphorylation.

Bias adds a layer of complexity to the traditional definition of
ligand action. For example, a �arr-biased AT1R agonist has
markedly different physiologic effects from the endogenous
agonist angiotensin II (68). Although angiotensin II causes
vasoconstriction, cardiac hypertrophy, and increased cardiac
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contractility, the �arr-biased agonist causes vasodilation and
does not cause cardiac hypertrophy, but still increases cardiac
contractility via �arr-mediated phosphorylation of tropomyo-
sin and other contractile proteins (69). A number of other G
protein- and �arr-biased agonists targeting a variety of recep-
tors are currently being tested in early phase clinical trials,
including those of the �-opioid receptor (70) and apelin recep-
tor (71).

Although many biased agonists have been identified seren-
dipitously, drug development of biased agonists requires an
approach for quantifying the degree of ligand bias. Classical
parameters of receptor signaling such as maximal effects (Emax)
and potencies (EC50) cannot account for differences in receptor
reserve and amplification of different signaling pathways (72).
In assays with significant amplification, such as second messen-
ger assays, e.g. cyclic AMP formation, both full and partial ago-
nists can reach the same maximal response, whereas in assays
with little amplification, such as assays that monitor recruit-
ment of �arr to a receptor, partial agonists have significantly
lower maximal responses than full agonists. Multiple

approaches have been developed that all address the issue of
differential amplification between signaling assays (72–74). As
an example, bias factors (72) yield an estimate of bias equivalent
to other approaches, and when combined with dissociation
constants obtained from a binding experiment, also provide an
estimate of relative efficacy. All of these approaches yield sim-
ilar estimates for bias (75), although relative errors can be sig-
nificantly higher depending on the assumptions made in the
analysis (76).

The Signaling Barcode: A Model for Allosteric Regulation
of �arrs

Numerous studies have suggested that �arrs can adopt mul-
tiple conformations that differentially regulate distinct cellular
signaling events. Regulation of these unique �arr conforma-
tions is controlled at a number of levels, through interactions
with the ligand�receptor complex, different post-translational
modifications of both the receptor and �arrs, and the presence
of other cofactors that are cell type-dependent. These different
mechanisms for �arr regulation have been integrated in the
“signaling barcode” model for receptor��arr signaling (17, 77)
(Fig. 3). Binding of �arr to distinct receptor C-terminal phos-
phorylation patterns (“barcodes”) generated by different
kinases results in different conformations of receptor-bound
�arrs. These different �arr conformations are capable of acti-
vating distinct downstream signaling events, such as endocyto-
sis, desensitization, or kinase activation. Although it is an
attractive hypothesis, there are still only limited data to support
it. At the M3 muscarinic receptor, differential phosphorylation
of the receptor C terminus was noted in response to different
ligands and in different tissues (presumably due to differential
expression of GRKs and other kinases) (78). At CXCR4, unique
serines are phosphorylated by PKA, GRK2, and GRK6, with
different effects on ERK1/2 phosphorylation and calcium influx
(79). At the �2AR, a �arr-biased ligand resulted in phosphory-
lation of distinct sites by GRK2 and GRK6 when compared with
a balanced agonist, with different effects on receptor endocyto-
sis and signaling through MAPKs (80). Important questions
that need to be addressed in further developing the barcode
model are how differential recruitment of kinases to the recep-
tor influences receptor phosphorylation, how the receptor
allosterically induces conformational changes in the structures
of �arrs, and the means by which specific post-translational
modifications of �arrs directly influence �arr conformation
and subsequent downstream signaling.

A Highly Conserved Structure and Activation Mechanism

The arrestins display high structural conservation as they
share features critical for their biological activity, although with
some notable differences. Arrestin-1 has N- and C- terminal
�-sheet domains with a series of buried polar residues (“polar
core”) in the N-domain stabilized by an extended C-terminal
tail that locks the molecule into an inactive state (81) (Fig. 4A).
�arr1 has an additional cationic amphipathic helix that could
serve as a reversible membrane anchor (82). The receptor-
binding surface of �arr2 does not form a contiguous �-sheet,
consistent with increased flexibility and possibly responsible
for its reduced selectivity for activated receptors (83). Arres-

FIGURE 2. Balanced and biased signaling by GPCRs. Top panel, in balanced
signaling, both G protein-mediated and �arr-mediated signaling pathways
are activated by the ligand�receptor complex. Bottom panel, in G protein- or
�arr-biased signaling, one of the pathways is activated while the other path-
way is blocked.
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tin-4 has differences in the concave surfaces of the �-sheets
involved in receptor binding and the loop between �-strands 1
and 2 (84). Notably, arrestin-1 was crystallized as a tetramer (a
dimer of dimers) and was noted to form dimers and tetramers
in solution (although different from those observed in the crys-
tal), although only monomeric arrestin-1 can bind to activated
rhodopsin (85). �arr1 and �arr2 self-associate and form het-
erodimers, which is enhanced by binding to inositol hexakis-
phosphate (86). The significance of �arr multimerization is
unclear, but it may regulate the subcellular distribution of �arrs
(86).

A number of studies led to a model for arrestin binding to the
receptor via two sensors: a “phosphate sensor” that interacts
with the phosphorylated receptor C terminus and an “activa-
tion sensor” that interacts with the active conformation of the
GPCR induced by agonist (87) (Fig. 4A). This model was largely
confirmed by the structure of �arr1 bound to a C-terminal
phosphopeptide from the vasopressin 2 receptor (V2R), stabi-
lized by a synthetic antibody fragment (88). The polar core acts
as the phosphate sensor: the phosphorylated receptor C termi-
nus displaces the arrestin C terminus and interacts with a num-
ber of positively charged residues in the polar core (Fig. 4A).
The disruption of the polar core is associated with a significant
twist of the N- and C-terminal domains relative to one another.
This results in exposure of regions of the protein that act as an
activation sensor, most notably the interdomain hinge and the
finger, middle, and lariat loops, structural changes that have
been observed in earlier biophysical studies (89 –93).

Structure of Receptor�Arrestin Complexes

The recent crystal structure of rhodopsin bound to arrestin-1
by serial femtosecond x-ray laser crystallography largely vali-
dates this mechanism for arrestin activation (94) (Fig. 4B). In
this structure, there are three arrestin-rhodopsin interfaces: the
finger loop of arrestin-1, which interacts with TM7 and TM8 of
rhodopsin, the interdomain hinge, which forms a cleft that
accommodates ICL2 of rhodopsin, and the �-strand, which fol-
lows the finger loop and interacts with TM5, TM6, and ICL3. A
notable difference is in the conformation of the finger loop

when compared with a rhodopsin�arrestin-1 finger loop pep-
tide complex: in the rhodopsin�arrestin-1 structure, a helical
structure for the finger loop was refined (Fig. 4B, yellow sticks),
whereas in the rhodopsin�peptide complex, a reverse turn
structure was observed (Fig. 4B, cyan sticks) (95). The
rhodopsin�arrestin-1 structure has the advantage of having the
entire arrestin-1 molecule in the structure, and a previous NMR
structure has demonstrated a helical conformation of the finger
loop (96). However, the rhodopsin�peptide structure was of sig-
nificantly higher resolution with better electron density in the
finger loop region when compared with the rhodopsin�
arrestin-1 structure. Therefore, the precise conformation of the
finger loop bound to the receptor is currently ambiguous,
although both structures demonstrate that arrestin binding
results in interactions with highly conserved motifs in the
receptor, including the Arg135 of the E(D)RY motif in TM3 and
Lys311 of the NPXXY motif at the end of TM6 (the motifs that
form the ionic lock in the inactive receptor). This region is
similar to the binding crevice that the G� C terminus uses to
bind to the receptor (97), demonstrating that GPCRs share a
common binding interface for interacting with G proteins and
�arrs.

Crystallography is limited to obtaining protein structures
that are stable and sufficiently ordered to produce protein crys-
tals. A complementary technique that has allowed the low-res-
olution visualization of large protein complexes is EM. Single-
particle negative-stain EM has allowed the visualization of
different modes of �arr1 binding to the �2AR (98). For these
studies, the �2AR��arr1 complex was stabilized with a syn-
thetic antibody fragment that binds the active �arr conforma-
tion. By combining hydrogen/deuterium exchange MS, bio-
chemical experiments, and single particle EM analysis, two
distinct conformations of the receptor��arr complex were iden-
tified (Fig. 4C). In the first conformation, �arr binds to the
phosphorylated receptor C terminus only; in the second con-
formation, �arr1 is tightly bound to the receptor through trans-
membrane core interactions (via the activation sensor) and
through the C terminus (via the phosphate sensor). These con-

FIGURE 3. Regulation of �arrs by GPCR signaling barcodes. A–C, in the signaling barcode model, a receptor activated by ligand (A) recruits kinases and other
enzymes that generate a signaling barcode (B) on the C-terminal tail of the receptor. This results in the recruitment of �arr and activation of effector molecules
(C). D, changes to the barcode result in differential effector coupling by �arrs (shown are the clathrin adapter AP-2 and ERK MAPK). 7TMR, seven-transmem-
brane class of receptors; Ub, ubiquitin.
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formations may represent steps in a multi-step binding process
of �arrs to GPCRs or may represent distinct states that are
associated with differential signaling.

Signal Transduction to Effectors

Recent structural studies have also addressed the question of
how �arrs transmit signals encoded in the receptor to effector
molecules. The �arrs can interact with downstream effectors in
different modes. For example, �arr1 can bind between blades 1
and 2 of the clathrin �-propeller via an intrinsically disordered
clathrin-binding box, but can also interact with a binding
pocket formed by blades 4 and 5 of clathrin via an 8-amino acid
splice loop found only in the long �arr1 isoform (99). Further
insights into the allosteric regulation of �arr signaling have
recently been provided by an NMR study that used 19F probes
in �arr1 to probe changes in its structure induced by different
phosphopeptides derived from the V2R C terminus (100).
Although all the phosphopeptides interacted with the phos-
phate sensor to induce changes in the finger and middle loops,
there were also distinct phospho-interaction patterns that were
related to the spacing of the multiple �arr phospho-binding
sites. These distinct patterns may serve as a structural model for
the signaling barcode, by which changes in a GPCR phosphor-
ylation pattern are translated to distinct conformations of �arr
that can be “read” by downstream effectors.

Future Directions

Over the past two decades, our understanding of the biology
of �arrs has expanded, to the point where we now appreciate
that these ubiquitous molecules are involved in virtually every
aspect of cell biology. This is a trait that they share with their
signaling partners, G protein-coupled receptors, whose over
800 members in the human genome regulate nearly every
aspect of physiology. The �arrs are versatile, regulating recep-
tor desensitization, trafficking, and signaling through their abil-
ity to interact with a vast array of binding partners. There are
still a number of unresolved questions that need to be addressed
regarding �arr function. From a structural perspective, it will be
important to determine the different biological roles of distinct
GPCR��arr conformations and how those are regulated via the
barcode or other signaling mechanisms. It will also be impor-
tant to obtain structures, via either crystallography or electron
microscopy, of GPCRs with �arrs and effectors to fully appre-
ciate how specific signaling modes are encoded. From a phar-
macologic perspective, the development of more biased ago-
nists, both as tool compounds to dissect receptor pharmacology
and as potential therapeutic agents, will continue to lead to
novel insights into how biological information is processed by
the cell.
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